A DESIGN-OF-EXPERIMENTS BASED APPROACH TO ENGINEERING A ROBUST MOORING SYSTEM FOR A SUBMERGED ADCP

Michael MacNicoll¹, Tobias Dewhurst^{1*}, Richard Akers¹, David A. Capotosto²

¹Maine Marine Composites, Portland, ME USA ²DeepWater Buoyancy, Inc., Biddeford, ME, USA

ADCP Buoy Wire Mooring Rope **Acoustic Release** Anchor Chain Anchor

Mooring Design Objectives

Objectives:

- 1. Maintain wire rope safety factor
- 2. Maintain anchor chain safety factor
- 3. Prevent anchor sliding
- 4. Minimize ADCP knockover
- 5. Minimize ADCP pitch
- 6. Recover acoustic release independently
- 7. Minimize capital cost

ne Marine Composites

Design Method

Result

Dynamic Numerical Model

- Low-diffraction regime (Morison-style hydrodynamics)
- FEA of mooring system
- Nonlinear Lagrangian formulation

Design Approach—Overview

- 1. Specify objectives
- 2. Specify input ranges
- 3. Quantify sensitivities using numerical model
- 4. Assemble and solve optimization model from sensitivities
- 5. Check result

Design Approach—Design of Experiments

Design Factor	Upper Limit	Upper Limit
Reserve Buoyancy Shape	Spherical	Elliptical
Reserve Buoyancy Lift	2,800 N	3,900 N
Anchor Mass	600 kg	1,500 kg
Chain Diameter	6 mm	10 mm
Acoustic Release Buoyancy	0.02 m ³	0.237 m ³
Wire Rope Diameter	6 mm	10 mm

(Adapted from NIST, 2018)

Design of Experiments: Main Effects

Introduction

Maine Marine Composites

Resu

Conclusion

Design of Experiments—Level Setting

Maine Marine Composites

Results

Objective	Initial Design	Optimized D	esign
Wire Load Safety Factor	2.87 🗸	2.95 🗸	
Chain Load Safety Factor	3.19 🗸	2.53 🗸	
Anchor Sliding	0.002 🗸	0.06 🗸	m
ADCP Pitch	8 🗸	9 🗸	deg.
ADCP Knockover	24.8 <mark>X</mark>	12.4 🗸	m
Acoustic Release Recovered?	Yes 🗸	Yes 🗸	
Cost	100% ?	84% 🗸	

Conclusion

Combining dynamic numerical modeling with <u>efficient</u> design techniques from other industries yielded a <u>improved performance</u> while <u>decreasing costs</u>.

References and Additional Slides

- 1. Fisher, R., Design of Experiments, 8th ed., Oliver and Boyd LTD, Edinburgh, 1960.
- 2. Ma, B.B., Lien, R-C., and D.S. Ko, "The variability of internal tides in the Northern South China Sea," J. Oceanogr. 69, 2013, pp. 619-630.
- 3. National Oceanic and Atmospheric Administration's National Data Buoy Center. "Station 44098 Jeffrey's Ledge, NH (160)." U.S. Dept. of Commerce. https://www.ndbc.noaa.gov/station_page.php?station=44098.
- 4. Eckert-Gallup, Sallaberry, Dallman, Neary. "Application of principle component anlysis (PCA) and improved joint probability distribution to the inverse first-order reliability method (I-FORM) for predicting extreme sea states," Ocean Engineering, 2016, pp. 307-319.
- 5. Coe, R.G. Michelen, C., Eckert-Gallup, A., Yu, Y., and J.v. Rij, "WDRT: A toolbox for design-response analysis of wave energy converters," Proceedings of the 4th Marine Energy Technology Symposium (METS), Washington D.C., 2016.
- 6. Haver, S., and S. Winterstein, "Environmental contour lines: a method for estimating long term extremes by short term anslysis," Trans. Soc. Nav. Archit. Mar. Eng. 116, 2009, pp. 116-127.
- 7. American Bureau of Shipping (ABS), Guide for Position Mooring Systems, Houston, TX, 2018.
- 8. Krishnaiah, K., and P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI Learning Private Limited, New Dehli, 2012.
- 9. Orcina LTC, OrcaFlex User Manual: OrcaFlex Version 10.2c, Daltongate Ulverston Cumbria, UK, 2018.
- 10. Bommier, E., "Peaks-Over-Threshold Modelling of Environmental Data," U.U.D.M. Project Report, 2014:33.
- 11. do Nascimento, F.F., Gamerman, D., and H. Freitas Lopes, "A semiparametric Bayesian approach to extreme value estimation," Stat. Comput. 22, 2012, pp. 661-675.

Results—Design Parameters

Design Parameter	Initial Design	Optimized Design
Reserve Buoyancy Shape	Spherical	Elliptical
Reserve Buoyancy Lift	0.603	0.49 N
Anchor Mass	1,500	1,694 kg
Chain Diameter	10	8.1 mm
Acoustic Release Buoyancy	0.237	0.18 m ³
Wire Rope Diameter	10	7.6 mm

Design Method—Sensitivity

Results	Traditional Catenary	
Criteria	Design	Gen. Pareto
	Wave	Dist.
Buoy Load		
Safety Factor	3.2	0.9
Pitch Factor	4	0.6

A DESIGN-OF-EXPERIMENTS BASED APPROACH TO ENGINEERING A ROBUST MOORING SYSTEM FOR A SUBMERGED ADCP

Michael MacNicoll¹, Tobias Dewhurst^{1*}, Richard Akers¹, David A. Capotosto²

¹Maine Marine Composites, Portland, ME USA ²DeepWater Buoyancy, Inc., Biddeford, ME, USA

